302

18 Advancements in Bio-hydrogen Production from Waste Biomass

58 Morimoto, K., Kimura, T., Sakka, K. et al. (2005). Overexpression of a hydroge-

nase gene in Clostridium paraputrificum to enhance hydrogen gas production.

FEMS Microbiology Letters 246: 229–234.

59 Pyne, M.E., Moo-Young, M., Chung, D.A. et al. (2014). Expansion of the genetic

toolkit for metabolic engineering of Clostridium pasteurianum: chromosomal

gene disruption of the endogenous CpaAI restriction enzyme. Biotechnology for

Biofuels 7: 163–172.

60 Klein, M., Ansorge-Schumacher, M.B., Fritsch, M. et al. (2010). Influence of

hydrogenase over-expression on hydrogen production of Clostridium aceto-

butylicum DSM 792. Enzyme and Microbial Technology 46: 384–390.

61 Zhao, J.F., Song, W.L., Cheng, J. et al. (2010). Heterologous expression of a

hydrogenase gene in Enterobacter aerogenes to enhance hydrogen gas production.

World Journal of Microbiology and Biotechnology 26: 177–181.

62 Lu, Y., Zhao, H., Zhang, C. et al. (2009). Perturbation of formate pathway for

hydrogen production by expressions of formate hydrogen lyase and its transcrip-

tional activator in wild Enterobacter aerogenes and its mutants. International

Journal of Hydrogen Energy 34: 5072–5079.

63 Kumar, N. and Das, D. (2001). Continuous hydrogen production by immobilized

Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices.

Enzyme and Microbial Technology 29: 280–287.

64 Gaj, T., Gersbach, C.A., and Barbas, III C.F. (2013). ZFN, TALEN and

CRISPR/Cas based methods for genome engineering. Trends in Biotechnology

31(7): 397–405.