302
18 Advancements in Bio-hydrogen Production from Waste Biomass
58 Morimoto, K., Kimura, T., Sakka, K. et al. (2005). Overexpression of a hydroge-
nase gene in Clostridium paraputrificum to enhance hydrogen gas production.
FEMS Microbiology Letters 246: 229–234.
59 Pyne, M.E., Moo-Young, M., Chung, D.A. et al. (2014). Expansion of the genetic
toolkit for metabolic engineering of Clostridium pasteurianum: chromosomal
gene disruption of the endogenous CpaAI restriction enzyme. Biotechnology for
Biofuels 7: 163–172.
60 Klein, M., Ansorge-Schumacher, M.B., Fritsch, M. et al. (2010). Influence of
hydrogenase over-expression on hydrogen production of Clostridium aceto-
butylicum DSM 792. Enzyme and Microbial Technology 46: 384–390.
61 Zhao, J.F., Song, W.L., Cheng, J. et al. (2010). Heterologous expression of a
hydrogenase gene in Enterobacter aerogenes to enhance hydrogen gas production.
World Journal of Microbiology and Biotechnology 26: 177–181.
62 Lu, Y., Zhao, H., Zhang, C. et al. (2009). Perturbation of formate pathway for
hydrogen production by expressions of formate hydrogen lyase and its transcrip-
tional activator in wild Enterobacter aerogenes and its mutants. International
Journal of Hydrogen Energy 34: 5072–5079.
63 Kumar, N. and Das, D. (2001). Continuous hydrogen production by immobilized
Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices.
Enzyme and Microbial Technology 29: 280–287.
64 Gaj, T., Gersbach, C.A., and Barbas, III C.F. (2013). ZFN, TALEN and
CRISPR/Cas based methods for genome engineering. Trends in Biotechnology
31(7): 397–405.